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Abstract 

Genotype-by-Environment (GxE) interactions influence the performance of genotypes 

across diverse environments, reducing the predictability of phenotypes in target environments. 

In-depth analysis of GxE interactions facilitates the identification of how genetic advantages or 

defects are expressed or suppressed under specific environmental conditions, thereby enabling 

genetic selection and enhancing breeding practices. This paper introduces two key models for 

GxE interaction research. Specifically, the study includes significance analysis based on the 

mixed effect model to determine whether genes or GxE interactions significantly affect 

phenotypic traits; stability analysis, which further investigates the interactive relationships 

between genes and environments, as well as the relative superiority or inferiority of genotypes 

across environments. Additionally, this paper presents RGxEStat, a lightweight interactive tool, 

which is developed by the author and integrates the construction, solution, and visualization of 

the aforementioned models. Designed to eliminate the need for breeders and agronomists to 

learn complex SAS or R programming, RGxEStat provides a user-friendly interface for 

streamlined breeding data analysis, significantly accelerating research cycles.  
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Chapter 1 Introduction 

1.1 Background and Motivations 

Gene-environment interactions refer to the modification of genetic factors by 

environmental factors, which can affect the performance of genotype in different environments 

and reduce the predictability of phenotypes in the target environment[1]. Understanding the 

complex behavior characteristics of organisms requires not only genetic information, but also 

the environment in which they live. The in-depth study of the interaction between genes and 

environments can make people have a good grasp of the relationship between individual living 

environment and phenotypic traits, and between genes and phenotypic traits. This analysis will 

help researchers identify how genetic advantages or defects are realized or suppressed in a 

specific environment, and then they can conduct gene selection, animal and plant breeding, 

pharmacogenomics, conservation biology research and so on.  

When a phenotype is of great economic significance, researchers usually analyze the 

stability between environmental factors and the genes corresponding to the phenotype. These 

phenotypes usually include reproductive fitness, length, height, weight, yield and disease 

resistance of organisms. For botanists, selecting genotypically superior crop seeds in the target 

environment is an important goal of plant breeding plan. The target environment is the 

production environment used by growers and farmers. In order to identify excellent genotypes 

in multiple environments, plant breeding needs to design and carry out cross-location and cross-

year completely random regional trials, especially in the final stage of variety development. 

Gene-environment interaction is considered to exist when the performance difference of a 

genotype in different environments leads to changes in size or rank. Genotypes show great 

performance differences in different environments due to the influence of environment on gene 

expression. Although crop varieties with high yield and stable performance are difficult to 

identify, they are of great value. Therefore, when the interaction between genes and 

environment is significant, it is very valuable to use statistical models to analyze the stability 

of genes and environment to select varieties with high yield and stable performance in 

agriculture. 

Biostatisticians and breeders often use the analysis of variance (ANOVA) to determine the 

existence and magnitude of genes and gene-environment interactions. When analyzing the 

interactions between genes and the environment of a group of superior varieties, genotypes are 
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usually considered as fixed effects and the environment is random. However, in order to 

estimate the breeding value or yield by using the best linear unbiased prediction (BLUP), 

genotypes are considered as random effects and the environment is fixed[2,33]. Some statisticians 

also tend to consider genotypes as random effects, as long as the goal is to choose varieties with 

the best traits[3]. ANOVA measures the variance components caused by different fixed and 

random factors (such as gene, location, year and replicate) and their interactions. However, 

ANOVA has limitations in exploring the response of genotypes to the environment, including 

assuming the homogeneity of variance among different environments[21]. If the gene action and 

the interaction between gene and environment are significant, then in turn, additional stability 

statistics can be calculated for gene stability analysis. 

So far, researchers in related fields have put forward several statistical methods for stability 

analysis. The most widely used method is the single-factor stability model based on regression 

and variance estimation. Regression statistics as the stability measurement was proposed by 

Yates and Cochran[4] and later improved by Eberhart and Russell[5]. According to the regression 

model, stability is expressed as the sum of squares of the trait means, the slope of the regression 

line and the regression deviation. The high trait mean of the genotype is a prerequisite for 

stability. The slope of the regression line represents the response of the genotype to the 

environmental index, which comes from the average performance of all genotypes in each 

environment. If there is no significant statistical difference between the slope and 1, then the 

genotype is applicable for all environments. A slope greater than 1 describes the genotype with 

higher sensitivity to environmental changes (lower than average stability) and higher specific 

adaptability to high-yield environments. A slope less than 1 provides greater resistance to 

environmental changes (higher than average stability), thus increasing the specificity of 

adaptability to low-yield environments. Perkins and Jinks put forward another similar 

regression coefficient, and they used the interaction effect between genes and environment to 

regress environmental effects[6].  

There are many variance statistics to measure gene stability. Wricke put forward the 

stability ecovalence (𝑊𝑊𝑖𝑖
2) in 1962 [7]. The ecovalence of genotype indicates its contribution to 

the sum of squares of gene-environment interactions in all environments. Because 𝑊𝑊𝑖𝑖
2  is 

expressed as the sum of squares, it is impossible to test the significance. Shukla proposed a 

stability variance (𝜎𝜎𝑖𝑖2 ), which is an unbiased estimate of the variance of gene-environment 

interactions plus the sum of error terms related to genotype [8]. 𝜎𝜎𝑖𝑖2 is a linear combination of 

Wricke's stability ecovalence (𝑊𝑊𝑖𝑖
2). Shukla's stability parameter measures the contribution of a 
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genotype to the interaction between genes and environment and error term. Therefore, 

genotypes with low 𝜎𝜎𝑖𝑖2 are regarded to be stable. According to Kang et al., the rank correlation 

coefficient between 𝑊𝑊𝑖𝑖
2 and 𝜎𝜎𝑖𝑖2 is 1, which means they both are equivalent in ranking the 

stability of genotypes. Kang developed the yield stability (𝑌𝑌𝑆𝑆𝑖𝑖 ) in 1993[9]. This index is a 

nonparametric statistic, which needs to be calculated by using the mean of traits and Shukla’s 

stability variance. 𝑌𝑌𝑆𝑆𝑖𝑖  gives equal weight to the mean of traits and 𝜎𝜎𝑖𝑖2 , and the gene is 

considered stable if its 𝑌𝑌𝑆𝑆𝑖𝑖 is greater than the mean 𝑌𝑌𝑆𝑆𝑖𝑖[10,11]. 𝑌𝑌𝑆𝑆𝑖𝑖 is computed based on the 

procedure outlined by Mekbib[10] in this thesis. The stability concept 𝑃𝑃𝑖𝑖 proposed by Lin and 

Binns in 1988 is derived from the average sums of squares of years nested in locations[12]. High 

stability is represented by low 𝑃𝑃𝑖𝑖, i.e., the low temporal variation of gene trait values. Francis 

and Kannenberg proposed the coefficient of variation (𝐶𝐶𝑉𝑉𝑖𝑖) in 1978[13], a genotype with low 

coefficient of variation are relatively stable.  

For multi-factor stability models, the additive main effects multiplicative interaction 

model (AMMI) and the genotypic main effect plus genotypic-by-environment interaction 

model (GGE) are gaining popularity in analyzing multi-environment experiment data because 

of their graphical display[14]. Proponents of AMMI and GGE methods disagree on the best way 

to analyze multi-environment breeding data[15,16], even though both methods present similar 

results. Yan et al. proposed GGE biplots based on the singular value decomposition of 

environment-centered or within-environment standardized bidirectional (gene and environment) 

data matrix[18]. GGE biplot is constructed by the first two principal components (PC1 and PC2), 

which accounts for the maximum variability in data. The GGE biplot graphically shows two-

way data matrix and visualizes the interrelationships and interactions between environments 

and genes [17]. In GGE biplots, genotype effect and gene-environment interaction effect are the 

two sources of variation associated with gene evaluation and original environment 

identification. AMMI model combines ANOVA with principal component analysis (PCA), 

where the former is used to characterize the main effects of genotype and environment, and the 

latter is to characterize the interaction (interaction principle component, IPCs)[19,20]. The AMMI 

biplot separates different genotypes according to their IPC scores. Therefore, it is easy to 

qualitatively evaluate the differences in gene stability and environment adaptability. The closer 

the IPC is to zero, the more stable the gene is in the test environment. Although the researchers 

have put forward various statistical methods to evaluate the stability, which reflects different 

aspects of gene-environment interaction effect, none of them can comprehensively explain the 

performance of genotypes in different environments. Stability statistics (variation) are best used 
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in conjunction with trait performance (e.g., average yield) 

Regarding the program implementation of the above methods, Piepho released a SAS 

mixed model program in 1999 to calculate the single factor stability statistics[27]. Hussein et al. 

also provided a SAS program (SASGxESTAB) in 2000 to calculate the single factor stability 

statistics and their correlation[26]. However, due to the age and version updates, the above SAS 

program is not available on the listed servers. Recently, Dia et al. proposed brand new SAS 

codes to analyze the interaction between genes and environment[2]. However, after the author's 

practice, it is found that some of its functions can't be realized due to code problems, and 

because of the lack of interactive interface, it also requires users to have high SAS programming 

skills, which is very unfavorable to breeders and farmers. Driven by this, this paper presents an 

easy-to-operate interactive software developed by the author in R language, which integrates 

significance and stability analysis models to help breeders and agronomists better analyze the 

gene-environment interactions for variety selection. 

1.2 Thesis Outline 

This thesis first introduces how to perform significance analysis based on the mixed effect 

model, including determining the significance of genes, gene-environment interactions, etc. 

Subsequently, when these effects are significant, single-gene and multi-gene stability models 

are established to analyze the stability and expression performance of genes in different 

environments. Finally, this paper presents RGxEStat developed by the author in R language, a 

portable interactive software that integrates the above significance analysis and stability 

analysis models. The thesis is organized as follows: 

Chapter 1 mainly focuses on the research background and related works of gene-

environment interaction analysis;  

Chapter 2 introduces some basic theories and knowledge needed for later significance and 

stability analysis, including fixed effect, random effect, principal component analysis and 

singular value decomposition;  

In chapter 3, the mixed effect model is constructed to analyze the significance of gene 

effect, gene-environment interaction effect and so on, and meanwhile determine the variation 

degree caused by those effects;  

Chapter 4 develops single-gene and multi-gene stability models for breeding gene 

selection, and analyzes the stability ability of different genes in various environments and the 

positive and negative effects of gene-environment interaction on phenotypic response values;  

Chapter 5 presents RGxEStat developed by the author, and uses two public breeding 
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datasets to show its operation process and analysis results;  

Chapter 6 is the summary and prospect of this thesis.  
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Chapter 2 Fundamentals 

This section mainly introduces some basic theories and methods used in the models in the 

third and fourth chapters, including fixed effects and random effects, principal component 

analysis and singular value decomposition. 

2.1 Fixed Effects and Random Effects 

In the mixed effect model, fixed effect and random effect are two key elements that deserve 

careful discrimination, which are used to describe different parameter types in the regression 

model. First, consider the following general linear regression equation: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖 , (2.1) 

where 𝑖𝑖  represents different individuals, 𝑡𝑡  denotes different periods, 𝛼𝛼  and 𝛽𝛽  are the 

regular intercept and slope. Consider a specific case where 𝑦𝑦𝑖𝑖𝑖𝑖 denotes the output value of the 

𝑖𝑖-th firm in the 𝑡𝑡-th year and 𝑥𝑥𝑖𝑖𝑖𝑖 is the scale of the 𝑖𝑖-th firm in the 𝑡𝑡-th year, and 𝜀𝜀𝑖𝑖 is the 

random error term. Equation (2.1) shows that the output value of each firm is determined by a 

constant (𝛼𝛼 ), which will be adjusted according to the scale of the firm (𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 ). It seems 

reasonable to use the general linear regression equation to model this example with a fixed 

effect of firm scale. However, the fact that the firm scale (𝑥𝑥𝑖𝑖𝑖𝑖) changes within each firm is 

ignored, which will lead to the independence of the model residuals, and violates the basic 

assumption of regression.  

In order to ensure the independence of the residuals and considering the fact that each firm 

has multiple observations, it is necessary to separate and estimate the individual characteristic 

quantity of each firm from the residual (𝜀𝜀𝑖𝑖). Thus, the following regression equation (2.2) is 

obtained. 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 . (2.2) 

This equation takes into account the random effects of individual firms (individual 

characteristics 𝛾𝛾𝑖𝑖), allowing each firm to have a separate intercept term (𝛼𝛼 + 𝛾𝛾𝑖𝑖). Therefore, 

this model is called random intercept and fixed slope regression model. If analyzed more deeply, 

the individual random effects can be split into random intercept component and a random slope 

part: 

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 = (𝛼𝛼 + 𝛼𝛼𝑖𝑖) + (𝛽𝛽 + 𝛽𝛽𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 . �2.3� 

In this equation, each firm has a separate intercept (𝛼𝛼 + 𝛼𝛼𝑖𝑖) and slope (𝛽𝛽 + 𝛽𝛽𝑖𝑖), hence it is called 

random intercept and random slope model. At this point, each individual is estimated to have a 
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unique trajectory. The intercept of these trajectories consists of the group horizontal intercept 

plus the deviation of individual random effect in the intercept term, and the slope of these 

trajectories consists of the group horizontal slope plus the deviation of individual random effect 

in the slope term. Note that the individual random effect may be positive or negative, because 

it indicates the way a given individual deviates from the group.  

In summary, fixed effects are the group level intercept and slope (𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖). These effects 

are traditional main effects and interactions, and they are fixed factors or treatments that do not 

change randomly. Random effects are individual characteristic part (𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖), which explains 

the random variability across samples and are randomly selected factors or treatments in a 

certain range in experiments or research. In Chapter 3, when analyzing the variability of gene-

environment interaction, different factors affecting phenotypic response values are regarded as 

fixed effects or random effects depending on the research purposes.  

2.2 Principle Component Analysis and Singular Value Decomposition 

Principal component analysis (PCA) is a widely used data dimensionality reduction 

algorithm. When the data set to be analyzed contains the observations of more than three 

interrelated quantitative variables, it will be very difficult to visualize the data because each 

variable can be treated as a different dimension. PCA can extract essential information from 

high-dimensional data tables and linearly combine the information into a set of new variables 

called principal components, which can be used to replace the original data, so as to reduce the 

dimension of the data. The core idea of PCA is to reconstruct the 𝑘𝑘 −dimensional feature data 

on the basis of the original 𝑛𝑛 −dimension feature data, and the 𝑘𝑘 −dimension is a brand-new 

orthogonal feature data and the above-mentioned principal components. The workflow of PCA 

is to sequentially find a set of mutually orthogonal coordinate axes from the original dimension 

data space: the first new coordinate axis is chosen to be the direction with the largest variance 

in the original data; the second new coordinate axis is the direction that maximize the variance 

in the plane orthogonal to the first coordinate axis; the third coordinate axis is the direction with 

the largest variance in the plane orthogonal to the first and second axes; by analogy, we can get 

𝑛𝑛  such coordinate axes. By attaining new coordinate dimensions in this way, most of the 

variance of the original data is contained in the first 𝑘𝑘 dimensions, and the variance in the 

following dimensions is almost zero. Therefore, it is reasonable to keep the first 𝑘𝑘 features 

(principal components) that contain most of the variability of the original data, and ignore the 

features (redundancy) that contain almost zero variance. In fact, by calculating the covariance 

matrix of the original data matrix and then attaining the eigenvalues and eigenvectors of 
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covariance matrix, the matrix composed of eigenvectors corresponding to the largest 𝑘𝑘 

eigenvalues (i.e., the largest variance) is the reduced-dimension mapping matrix. Since we can 

calculate the eigenvalues and eigenvectors of the covariance matrix by eigenvalue 

decomposition and singular value decomposition, there are two implementations of PCA 

algorithm. These two implementations will be described in detail below.  

Eigenvalue decomposition. For the covariance matrix of original data 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛, the 𝑘𝑘 

largest eigenvalues of the matrix, 𝜆𝜆1, 𝜆𝜆2,⋯ , 𝜆𝜆𝑘𝑘 , can be obtained by solving the following 

characteristic equation: 

|𝐴𝐴 − 𝜆𝜆𝜆𝜆| = 0. �2.4� 

The eigenvectors 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛×1 can be obtained by taking the obtained 𝜆𝜆1, 𝜆𝜆2,⋯ , 𝜆𝜆𝑘𝑘 

into the following linear equations respectively: 

(𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝑥𝑥 = 0. �2.5� 

The eigenvectors 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘  are formed into a matrix [𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘] ∈ 𝑅𝑅𝑛𝑛×𝑘𝑘 , i.e., the 

mapping matrix. The PCA is realized by multiplying the original data by the mapping matrix 

and each column in the reduced data matrix is a principal component. 

Singular value decomposition. Eigenvalue decomposition can only be performed for 

𝑛𝑛 × 𝑛𝑛 square matrices. In practices, the eigenvalue decomposition method usually fails since 

most of the matrices encountered are not square matrices. In this case, SVD can be applied to 

arbitrary matrix decomposition, including non-square matrices. For any matrix 𝐴𝐴 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 , 

there is always a singular value decomposition:  

𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇, �2.6� 

where 𝑈𝑈 ∈ 𝑅𝑅𝑚𝑚×𝑚𝑚 , the column vectors inside it are orthogonal and are called left singular 

vectors; Σ ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, the elements in Σ, except for the diagonal elements, are 0 and the diagonal 

elements are called singular values (also eigenvalues); 𝑉𝑉𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 , and the orthogonal 

column vectors in it are called right singular vectors. To decompose the matrix 𝐴𝐴 using 

SVD, the eigenvalues and eigenvectors of 𝐴𝐴𝐴𝐴𝑇𝑇 are first obtained and 𝑈𝑈 is composed of 

unitized eigenvectors; then compute the eigenvalues and eigenvectors of 𝐴𝐴𝑇𝑇𝐴𝐴 and 𝑉𝑉 is 

formed by these unitized eigenvectors; finally take the square root of the eigenvalues of 𝐴𝐴𝐴𝐴𝑇𝑇 

or 𝐴𝐴𝑇𝑇𝐴𝐴 to form Σ. The eigenvalues in Σ are sorted from large to small, and the largest 𝑘𝑘 

eigenvalues are selected, and the corresponding 𝑘𝑘 eigenvectors in the right singular matrix are 

used as column vectors to form the dimensionality reduction mapping matrix. The original data 

is multiplied by this mapping matrix to realize the dimensionality reduction. Using SVD for 
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PCA, the original data can be downscaled in two directions (row and column). The eigenvectors 

in the left singular matrix can be used to compress the original data in the row direction, and 

the right singular matrix is to reduce the dimensionality along column direction.  

So far, this thesis has introduced the principles of PCA and the use of singular value 

decomposition to realize PCA. In Chapter 4, we will use principal component analysis and 

singular value decomposition to analyze the gene-environment interactions.  
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Chapter 3 Significance Analysis of Gene-Environment 

Interaction 

This chapter mainly analyzes the significance of the gene-environment interactions. First, 

a mixed effect model based on genes, environment and gene-environment interaction is 

constructed, and then the significance of the model is analyzed to determine the significant 

effects that affect the phenotypic response. Moreover, the model can estimate the variance of 

the response value caused by gene and gene-environment interaction effect. 

3.1 Mixed Effect Model 

Generally, 𝐺𝐺 varieties planted in 𝜆𝜆 environments with 𝑅𝑅 random replications generate 

𝐺𝐺 × 𝜆𝜆 × 𝑅𝑅  observations. The "env" is usually a combination of location and year. Each 

combination of genotype and environment is called a "treatment", so there is a total of 𝐺𝐺 × 𝜆𝜆 

treatments.  

Table 3.1 Degree of freedom and effect category of variation source terms 

Source of 
variation 

Degree of 
freedom 

Fixed or random effect 

Case 1 Case 2 Case 3 Case 4 Case 5 
CLT G-1 random fixed fixed random fixed 

LC L-1 random fixed random fixed fixed 

YR Y-1 random fixed random random random 

RP(LC∗YR) (R-1)LY random random random random random 

CLT∗YR (G-1)(Y-1) random fixed random random random 

CLT∗LC (G-1)(L-1) random fixed random random fixed 

LC∗YR (L-1)(Y-1) random fixed random random random 

CLT∗YR∗LC (G-1)(L-1)(Y-1) random fixed random random random 

The mixed effect model constructed in this thesis should include four factors: genotype 

(CLT), location (LC), year (YR) and replication (RP) nested in location and year. According to 

different analysis purposes, genotype, location and year can be defined as random or fixed 

effects, as shown in Table 3.1, where G, L, Y and R are the numbers of varieties (genotypes), 

locations, years and replications respectively. Genotypes can be considered as random when the 

aim is to estimate variance components, genetic parameters, genetic gains obtained from 

breeding selection or different breeding strategies, etc. On the contrary, when the purpose is to 

compare experimental materials for selection or recommendation, genotypes are fixed factors. 

Similarly, when researchers are primarily interested in estimating variance components of sites 
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that represent relevant population in the target area, location is considered random. When it is 

interesting to make explicit comparisons of a level, the locations are fixed, and each location 

represents a clearly-defined area relative to crop management. Years and replicate trials are 

usually regarded as random factors. 

Furthermore, as shown in Table 3.2, five different mixed effect models can be deduced in 

different cases. In Table 3.2, ∗  shows the interaction effect of different terms, i.e., the 

combination of grouping variables; 1 is the global intercept term of the model, indicating the 

benchmark value of Trait when all other effects are zero.  

Table 3.2 Mixed effect models in different cases  

Case Mixed effect model 

Case 1 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡~1 + 1|𝑌𝑌𝑅𝑅 + 1|𝐿𝐿𝐶𝐶 + 1|𝐶𝐶𝐿𝐿𝑇𝑇 + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) +
1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝑅𝑅𝑃𝑃)                                                                    (3.1)                                                          

Case 2 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡~𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇 + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝑅𝑅𝑃𝑃)                               (3.2)                

Case 3 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡~1 + 1|𝑌𝑌𝑅𝑅 + 1|𝐿𝐿𝐶𝐶 + 𝐶𝐶𝐿𝐿𝑇𝑇 + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) +
1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝑅𝑅𝑃𝑃)                                  (3.3) 

Case 4 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡~1 + 1|𝑌𝑌𝑅𝑅 + 𝐿𝐿𝐶𝐶 + 1|𝐶𝐶𝐿𝐿𝑇𝑇 + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) +
1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝑅𝑅𝑃𝑃)                                  (3.4)  

Case 5 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡~1 + 1|𝑌𝑌𝑅𝑅 + 𝐿𝐿𝐶𝐶 + 𝐶𝐶𝐿𝐿𝑇𝑇 + 𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇 + (𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝐿𝐿𝐶𝐶 ∗
𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝑅𝑅𝑃𝑃)                           (3.5) 

This work uses the lmer function of lme4 package[22] to fit the mixed effect models, 

calculate the estimates and standard deviations of the fixed effect terms and the estimates of the 

variation components of the random effect terms. In order to obtain the response predictions of 

a certain trait by using the mixed effect model, it is necessary to compute the estimates of the 

random terms. The best linear unbiased prediction (BLUP) of random effect is the predicted 

value of the random effect at the individual or subgroup level, and its formula is as follows: 

𝑢𝑢� = 𝜆𝜆(𝑢𝑢|𝑦𝑦) = 𝐺𝐺𝑍𝑍𝑇𝑇𝑉𝑉−1�𝑦𝑦 − 𝑋𝑋�̂�𝛽�, (3.6) 

𝑉𝑉 = 𝑍𝑍𝐺𝐺𝑍𝑍𝑇𝑇 + 𝑅𝑅, (3.7) 

where 𝐺𝐺 is the covariance matrix of random effects, 𝑍𝑍 the design matrix of random effects, 

𝑉𝑉 the total covariance matrix, 𝑅𝑅 the residual covariance matrix, 𝑋𝑋 the design matrix of fixed 

effects, and �̂�𝛽 the estimate of fixed effects. In the experiment, the ranef function[22] of lme4 

package is used to estimate BLUPs of random effects. The estimates of random effects tend to 

be "shrunk" towards the population mean relative to the fixed effect estimates. Then the best 
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linear unbiased predictions corresponding to each genotype is the summation of all fixed effect 

and random effect estimates.   

3.2 Significance Analysis 

After constructing the mixed effect model (Table 3.2), it is necessary to analyze the 

significant effect items affecting the phenotype response, and estimate the variation magnitude 

of each part in the model, which is beneficial to simplifying the model and also a prerequisite 

for later stability analysis. 

For the fixed effect terms in the model, the lmer function will automatically use 

Satterthwaite approximation method to calculate the degree of freedom and p value when fitting. 

Satterthwaite method is suitable for equilibrium designs or simple models, but may not be 

accurate enough in complex models, such as those with random replications and high-order 

interaction effects. Here, the mixed function in afex package[29] is employed to compute the 

degree of freedom and p value of F test by Kenward-Roger approximation.  

On the other hand, it is often more complicated to calculate the significance of random 

effect terms, and we need construct auxiliary mixed effect models. When the gene (CLT), 

location (LC) and year (YR) are all random effects (case 1), in order to validate the significance 

of YR, it is necessary to construct an auxiliary mixed effect model as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡~1 + 1|𝐿𝐿𝐶𝐶 + 1|𝐶𝐶𝐿𝐿𝑇𝑇 + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝑌𝑌𝑅𝑅 ∗

𝐿𝐿𝐶𝐶 ∗ 𝐶𝐶𝐿𝐿𝑇𝑇) + 1|(𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝑅𝑅𝑃𝑃).                                               (3.8) 

Compared with formula (3.1), formula (3.8) only lacks one effect term whose significance 

needs to be analyzed. Now all that is required to verify the significance of YR is to analyze the 

differences between models (3.8) and (3.1). It is the same operations to verify the significance 

of other random terms. The significance of the difference between two mixed effect models is 

estimated by likelihood ratio test to obtain p value. Here, likelihood ratio is the probability of 

known data under a given model. The logic of likelihood ratio test is to compare the two models 

against each other. According to Wilk’s theorem, the negative double of the log likelihood ratio 

of the two models approximates the chi-square distribution with k degrees of freedom, where k 

is the number of random effects in the test. In this paper, the anova function in stats package is 

utilized to test the log-likelihood ratio between the models without and with the factor to be 

tested, which gives the corresponding chi-square value, degree of freedom and p value. Using 

this method, the significance of random effects can be attained.  

Until now, this paper has developed the mixed effect model of phenotype responses, and 

tested the significance of fixed effect and random effect terms in the model, so as to judge 
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whether genes and the interaction between genes and environment have a statistically 

significant impact on gene traits. Only if the interaction between genes and environment is 

significant, the later model for gene stability analysis is meaningful. At the same time, according 

to the model, we can also estimate the trait variance caused by various significant components 

such as genes and gene-environment interactions, and the larger the variance is, the greater 

influence it has on the gene performance.  
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Chapter 4 Stability Analysis of Gene-Environment Interaction 

After determining that gene-environment interactions statistically exist by significance 

analysis, this thesis continues to analyzes the adaptability of genotypes (variety) in different 

environments and the mutual assistance between genotypes and environments. This chapter will 

first introduce the single-gene stability model based on grouped regression, and then the multi-

gene stability model, which includes additive main effect and multiplicative interaction and 

gene main effect plus gene-environment interaction. It is worth noting that single-gene model 

can only analyze a single genotype (variety) at a time, and quantitatively investigate its stability 

in different environments. Multi-gene model can simultaneously analyze the adaptability and 

interaction patterns of all genotypes (varieties) in different environments. It processes the data 

of all genotypes and environments, and study the gene-environment interaction by multivariate 

methods (such as principal component analysis and singular value decomposition).  

4.1 Single-Gene Stability Analysis 

In the single-gene stability model, the average trait observation (ENVTrait) needs to be 

calculated by YR-LC-RP groups. Let's assume that there are (𝜆𝜆1,𝜆𝜆2,⋯ ,𝜆𝜆𝑘𝑘) levels of ENV and 

(𝑅𝑅1,𝑅𝑅2,⋯ ,𝑅𝑅𝑀𝑀) levels of RP, and then construct the following group linear regression model: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + 𝛽𝛽1𝑗𝑗 ⋅ ENVTrait + �𝛽𝛽𝐸𝐸𝑖𝑖𝑖𝑖

𝐾𝐾

𝑖𝑖=2

⋅ 𝐼𝐼(ENV = 𝜆𝜆𝑖𝑖) + �𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖

𝑀𝑀

𝑖𝑖=2

⋅ 𝐼𝐼(RP = 𝑅𝑅𝑖𝑖) + 𝜖𝜖𝑗𝑗 , (4.1) 

where j represents the j-th genotype (variety), 𝐼𝐼(∙) is an indicative function and 𝜖𝜖𝑗𝑗 an error 

term, and we take the first level 𝜆𝜆1,𝑅𝑅1 as a reference by default.  

In this model, we particularly focus on the regression slope (𝛽𝛽1𝑗𝑗) and regression deviation 

(𝑠𝑠𝑑𝑑2). 𝛽𝛽1𝑗𝑗 is the slope of the j-th variety to the continuous variable ENVTrait, which indicates 

the response of genotypes to ENVTrait, and ENVTrait comes from the average performance of 

all genotypes in each environment. Therefore, if there is no statistically significant difference 

between 𝛽𝛽1𝑗𝑗 with 1, the variety has strong adaptability to all environments; 𝛽𝛽1𝑗𝑗 greater than 

1 describes genotypes that are more sensitive to environmental changes (lower than average 

stability) and have higher mutual assistance with high-yield environments; 𝛽𝛽1𝑗𝑗  less than 1 

provides greater resistance to environmental changes (higher than the average stability), so 

cultivars have better adaptability to low-yield environments of drought and water shortage. 

Similarly, we can deduce the same conclusions by analyzing the relationship between 𝑠𝑠𝑑𝑑2 and 

0. Here, we need to test the regression slope (𝐻𝐻0: 𝛽𝛽1𝑗𝑗 = 1) by T-test and the regression deviation 
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(𝐻𝐻0: 𝑠𝑠𝑑𝑑2 = 0) by F-test. We perform T-test and F-test by using lm function, dplyr[31] and tidyr[32] 

packages in R.  

Environment index is the average performance of all genotypes in each environment. In 

order to compute the variance statistics of gene stability, the following Gaussian generalized 

linear model is needed additionally: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡~𝐿𝐿𝐶𝐶 + 𝑌𝑌𝑅𝑅 + 𝑌𝑌𝑅𝑅 ∗ 𝐿𝐿𝐶𝐶 + 𝐿𝐿𝐶𝐶 ∗ 𝑌𝑌𝑅𝑅 ∗ 𝑅𝑅𝑃𝑃 + 𝐶𝐶𝐿𝐿𝑇𝑇 + 𝐶𝐶𝐿𝐿𝑇𝑇 ∗ 𝐿𝐿𝐶𝐶 + 𝐶𝐶𝐿𝐿𝑇𝑇 ∗ 𝑌𝑌𝑅𝑅 + 𝐶𝐶𝐿𝐿𝑇𝑇 ∗ 𝐿𝐿𝐶𝐶 ∗ 𝑌𝑌𝑅𝑅. (4.2) 

Subsequently, we need to use the variations and residuals of the model to calculate Shukla’s 

𝜎𝜎𝑖𝑖2 , ssquares and Wricke’s stability ecovalence 𝑊𝑊𝑖𝑖
2  and Kang's yield stability 𝑌𝑌𝑆𝑆𝑖𝑖  by the 

Stability.par function of agricolae package[30]. 

Although the single-gene stability model can numerically analyze the stability of each 

genotype, it cannot solve the problems such as which genes have higher yield in which 

environment, so it is necessary to develop the multi-gene stability model. 

4.2 Multi-Gene Stability Analysis 

This section introduces the multi-gene stability analysis models, and analyzes the 

adaptability and capacity of multiple genotypes in different environments, so as to facilitate the 

cross-sectional comparison of multiple genotypes. The models include additive main effect and 

multiplicative interaction (AMMI) and the gene main effect plus gene-environment interaction 

(GGE). 

4.2.1 Additive Main Effect and Multiplicative Interaction 

For AMMI, it is a combination of ANOVA and PCA. PCA calculates the gene score and 

environment score, and adds the product of the two to the overall mean as the trait prediction 

of the genotype in the environment. ANOVA calculates the gene deviation (the difference from 

the overall mean) and the environment deviation, and adds the sum of them to the overall mean 

as the trait estimation of the genotype. ANOVA model leaves a non-additive residual, i.e., the 

interactions between gene and environment. ANOVA is an additive model and PCA is a 

multiplicative model, so AMMI is called the additive main effect and multiplicative interaction 

model.  

The additive principal effect and multiplicative interaction model firstly estimates the 

additive main effect of two-way data table (gene and environment) by ANOVA, and then applies 

PCA to the residual term (interaction) of additive ANOVA model to approximate 𝑁𝑁 ≤ min(𝐼𝐼 −

1, 𝐽𝐽 − 1) interaction principal components (IPC), obtaining the estimates of the multiplicative 

term of AMMI model. 𝐼𝐼 is the number of genotypes (rows) and 𝐽𝐽 number of environments 
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(columns) considered in the two-way data table. For simplicity, supposing a completely random 

trial design, the AMMI model can be written as: 

𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + � 
𝑁𝑁

𝑛𝑛=1

𝜆𝜆𝑛𝑛𝛾𝛾𝑖𝑖,𝑛𝑛𝛿𝛿𝑛𝑛,𝑗𝑗 + 𝜌𝜌𝑖𝑖,𝑗𝑗 + 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑘𝑘, (4.3) 

where 𝑦𝑦𝑖𝑖,𝑘𝑘,𝑘𝑘 is the trait response of the i-th genotype (variety) in the j-th environment of the k-

th replication, 𝜇𝜇 is the overall mean, 𝛼𝛼𝑖𝑖 the gene-induced deviation from the overall mean, 

𝛽𝛽𝑗𝑗 the environment-induced deviation from the overall mean, 𝜆𝜆𝑛𝑛 the singular value of the n-

th axis of IPC, 𝛾𝛾𝑖𝑖,𝑛𝑛 and 𝛿𝛿𝑛𝑛,𝑗𝑗 the IPC scores of the i-th genotype and the j-th environment of 

n-th axis, 𝜌𝜌𝑖𝑖,𝑗𝑗  the residual of all multiplication terms not included in the model, 𝜖𝜖𝑖𝑖𝑗𝑗,𝑘𝑘  the 

experiment error and N the number of maintaining principle components.  

Expressed in the form of matrix: 

𝒀𝒀 = 𝟏𝟏𝑖𝑖𝟏𝟏𝑗𝑗𝑇𝑇𝜇𝜇 + 𝛼𝛼𝑖𝑖𝟏𝟏𝑗𝑗𝑇𝑇 + 𝟏𝟏𝑖𝑖𝛽𝛽𝑗𝑗𝑇𝑇 + 𝑼𝑼𝑼𝑼𝑼𝑼𝑇𝑇 + 𝜀𝜀, (4.4) 

where 𝒀𝒀 ∈ 𝑅𝑅𝐼𝐼×𝐽𝐽  is the trait mean across repeated trials or blocks, and each column of 𝒀𝒀 

represents the vector of genotypic means as obtained from the phenotypic analysis of a 

corresponding trial by an appropriate mixed model that accounts for experimental design 

features or spatial trends. 𝟏𝟏𝑖𝑖𝟏𝟏𝑗𝑗𝑇𝑇𝜇𝜇 is a (𝐼𝐼 × 𝐽𝐽) matrix with the grand mean 𝜇𝜇 in all positions, 

𝛼𝛼𝑖𝑖𝟏𝟏𝑗𝑗𝑇𝑇 is the (𝐼𝐼 × 𝐽𝐽) main effect matrix of genes, and 𝟏𝟏𝑖𝑖𝛽𝛽𝑗𝑗𝑇𝑇 is the (𝐼𝐼 × 𝐽𝐽) main effect matrix of 

environment. The gene-environment interactions 𝒀𝒀∗ = 𝒀𝒀 − 𝟏𝟏𝑖𝑖𝟏𝟏𝑗𝑗𝑇𝑇𝜇𝜇 − 𝛼𝛼𝑖𝑖𝟏𝟏𝑗𝑗𝑇𝑇 − 𝟏𝟏𝑖𝑖𝛽𝛽𝑗𝑗𝑇𝑇  are 

approximated by the product of 𝑼𝑼𝑼𝑼𝑼𝑼𝑇𝑇, where U is a (𝐼𝐼 × 𝑁𝑁) matrix whose columns contains 

left singular vectors; D is a (𝑁𝑁 × 𝑁𝑁) diagonal matrix containing the singular value of 𝐘𝐘∗; V 

is a (𝐽𝐽 × 𝑁𝑁) matrix whose columns contain the right singular vectors. The residual term 𝜀𝜀 ∈

𝑅𝑅𝐼𝐼×𝐽𝐽 in the equation contains both the misfitting term and the error term of the model.  

It is quite crucial to choose the number of multiplication terms N (i.e. the number of 

principal components retained) in AMMI, because it will affect the subsequent results[23]. 

Forkman and Piepho put forward a new method on how to select the number of principal 

components in AMMI based on parametric bootstrap resampling[24]. This thesis draws on this 

method, and uses agricolae package[30] to realize AMMI model construction and biplot analysis 

in RGxEStat.  

4.2.2 Gene Main Effect plus Gene-Environment Interaction 

Unlike AMMI model, GGE model considers gene main effects and gene-environment 

interaction effects, which are also referred as locus regression model. In AMMI, main effects 
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and interaction effects are estimated separately, and bilinear parameters specifically describe 

gene-environment interactions. In GGE, the main effect of genotype is not much different from 

gene-environment interaction effect. Therefore, the multiplicative part of the model describes 

the effects of gene, gene-environment interaction at the same time. In addition, the stability and 

adaptability of genotype can be directly explained by examining the GGE biplots. GGE biplots 

mainly analyze the first two principal components, which are obtained based on the singular 

value decomposition of standardized two-way (gene and environment) data matrix in the 

environment center or within environment. The first principal component describes the 

performance (or fitness), and the second principal component describes the effects of gene-

environment interaction (or stability).  

The GGE model can be formulated as: 

𝒀𝒀 = 𝑿𝑿𝟏𝟏𝜷𝜷 + �λ𝑘𝑘diag(𝒁𝒁𝛂𝛂𝒌𝒌)𝑿𝑿𝟐𝟐𝜸𝜸𝒌𝒌

𝑖𝑖

𝑘𝑘=1

+ 𝛆𝛆, (4.5) 

where the vector 𝒀𝒀  contains �𝑣𝑣 × (𝑇𝑇 × 𝑗𝑗)�  phenotypic responses, 𝑣𝑣  are the number of 

genotypes, 𝑇𝑇  the number of repeated trials or blocks, and 𝑗𝑗  the number of environments 

(combination of location and year). 𝜷𝜷 ∈ 𝑅𝑅(𝑟𝑟×𝑗𝑗)×1 represents the effect vector of replications 

within locations, which is obtained from the appropriate mixed effect model. λ𝑘𝑘,  𝛂𝛂𝒌𝒌, 𝜸𝜸𝒌𝒌 

respectively denotes the singular value and the genotype and environment singular vectors 

related to the k-th principal component, where 𝑘𝑘 = 1,⋯ , 𝑡𝑡 and 𝑡𝑡 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑣𝑣 − 1, 𝑗𝑗) is the rank 

of the gene and gene-environment interaction matrix 𝐺𝐺𝐺𝐺𝜆𝜆(𝑟𝑟×𝑗𝑗)×𝑐𝑐. In addition, 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐,𝒁𝒁 are 

the design matrices; 𝛆𝛆 ∈ 𝑅𝑅[𝑣𝑣×(𝑟𝑟×𝑗𝑗)]×1  is the experiment error and 

𝜺𝜺|𝜎𝜎𝑒𝑒2~𝑁𝑁𝑣𝑣×(𝑟𝑟×𝑗𝑗)�𝟎𝟎,𝜎𝜎𝑒𝑒2𝑰𝑰𝑣𝑣×(𝑟𝑟×𝑗𝑗)� ;  𝜎𝜎𝑒𝑒2  is the residual variance, 𝟎𝟎 ∈ 𝑅𝑅[𝑣𝑣×(𝑟𝑟×𝑗𝑗)]×1  the zero 

vector，𝑰𝑰𝑣𝑣×(𝑟𝑟×𝑗𝑗) the unit matrix.  

The vector 𝒀𝒀  obeys a multivariate normal distribution conditioned on the model 

parameters, 

𝒀𝒀|𝜷𝜷, 𝜆𝜆,𝜶𝜶,𝜸𝜸,𝜎𝜎𝑒𝑒2 ~ 𝑵𝑵(𝝁𝝁𝒚𝒚, 𝑰𝑰𝒗𝒗×(𝒓𝒓×𝒋𝒋)𝜎𝜎𝑒𝑒2), (4.6) 

where 𝝁𝝁𝒚𝒚 = 𝑿𝑿𝟏𝟏𝜷𝜷 + ∑ λ𝑘𝑘diag(𝒁𝒁𝛂𝛂𝒌𝒌)𝑿𝑿𝟐𝟐𝜸𝜸𝒌𝒌𝑖𝑖
𝑘𝑘=1 .  

Compared with the AMMI biplot, GGE biplots are highly attractive. Based on the analysis 

of the inner product property between singular vectors (genotypes and environments) in GGE 

model, more different kinds of biplots can be potted to identify genotypes with high yield and 

wide adaptability (stability), and the winning varieties are also suggested in each environment.  

This work employs GGEBiplotGUI package[25] to construct GGE model, and integrates it 
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into RGxEStat software, so that users can perform interactive GGE model analysis and draw 

various biplots without running any code.   
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Chapter 5 Experiment Results and Analysis 

This chapter will use RGxEStat to perform the significance and stability analysis on two 

public available breeding datasets, and show the experiment results of the models. The interface 

of RGxEStat is shown in Figure 5.1, including significance analysis, single-gene stability model 

analysis and multi-gene stability model analysis. Code and datasets are available at 

https://github.com/mason-ching/RGxEStat.  

 
Figure 5.1 Interface of RGxEStat 

5.1 Data Sources 

The experiment data selected in this thesis consists of two parts: watermelon breeding data 

in the southern part of the United States from 2009 to 2010; oat field random trial data from 

agridat package. The watermelon breeding data in the southern United States were obtained 

from random and replicated block trials across 2 years, 10 varieties, 5 locations, 4 replications， 

with the marketable yield as the analyzed trait. The oat field trial data includes 6 environments, 

https://github.com/mason-ching/RGxEStat
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24 varieties and the corresponding marketable yield. 

Table 5.1 shows the template of multi-year multi-location random trial data (breeding data) 

of gene and environment, in which YR, LC, RP, CLT and MY represent year, location, 

replication, variety (genotype) and marketable yield, respectively.  

Table 5.1 Demo of watermelon yield trial data in the southern United States in 2009-2010 

YR LC RP CLT MY 

2009 KN 1 EarlyCanda 56.236 

2009 KN 1 CalhounGray 74.167 

2009 KN 1 GeorgiaRattlesnake 55.873 

2010 TN 2 EarlyCanda 32.601 

2010 TN 2 CalhounGray 74.167 

2010 TN 2 GeorgiaRattlesnake 64.794 

5.2 Significance Analysis Results 

This section begins with modeling watermelon breeding data from the southern region of 

the United States by constructing the mixed effect model of case 1. Subsequently, we perform 

a significant analysis of all the fixed effect and random effect terms in the model by F test and 

likelihood ratio test respectively, and determine the significant effects influencing the 

watermelon yield. The analysis results are shown in Table 5.2.  

Table 5.2 Significance analysis of watermelon breeding data 

Source of variance Variance Standard deviation p value of Chi-square 
test 

YR ∗ LC ∗ CLT 49.74 7.05 0.008 

YR ∗ LC ∗ RP 73.91 8.60 0.000 

LC ∗ CLT 0.00 0.00 1.000 

YR ∗ CLT 0.00 0.00 1.000 

YR ∗ LC 57.81 7.60 0.078 

CLT 111.68 10.57 0.001 

LC 699.36 26.45 0.009 

YR 0.00 0.00 1.000 

residual 327.53 18.10 - 

In this example, the chi-square p values of the random effects location-genotype (LC ∗ CLT), 

year-genotype (YR ∗ CLT), year-location (YR ∗ LC) and year (YR) are greater than significant level 

𝛼𝛼 = 0.05 , so it can be concluded that these terms have no effect on watermelon yield. 

Meanwhile, it also indicates that the mixed effect model is over-fitted and the model is more 
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complicated than the analyzed data. It is often the case that random effect variance estimated 

as zero appear when those effects have too few or small number of levels. The alternate option 

is to use MCMCglmm package[28] to implement Markov chain Monte Carlo (MCMC) 

simulation to obtain the significance probability of random effects. Subsequently, the oat field 

data are analyzed for significance probability by developing the mixed effect model of case 2. 

The results are displayed in Table 5.3. 

Table 5.3 Significance analysis of oat field data 

Source of variance Mean of squared error F value p value of F test 
LC ∗ CLT 0.411 2.989 0.018 

CLT 0.554 3.547 0.013 

LC 0.334 2.856 0.037 

residual 0.156 - - 

Since year is not recorded in the oat field random trial data, there is no effect term related 

to the year. From Table 5.3, it can be seen that the F-test p values of location-genotype (LC ∗

CLT), location (LC) and genotype (CLT) are all greater than significant level 𝛼𝛼 = 0.05, so it can 

be assumed that these effects have an impact on oat yield.  

 
Figure 5.2 Scatter plots of yield predictions versus model residuals for (a) watermelon breeding data and (b) 

oat field random trial data.  

Finally, the RGxEStat can automatically calculate the best linear unbiased predictions of 

fixed effects and random effects in the model, and get the yield estimates. The predictions of 

yield and the residual error of the model calculated by RGxEStat are shown in Figure 5.2. After 

significant analysis, we can judge that gene effects, gene-environment effects will affect the 

yield of watermelon and oat, so it is necessary to carry out subsequent stability analysis to select 
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varieties with excellent high yield and strong stability. 

5.3 Results of Single-Gene Stability Analysis 

In this section, we will show RGxEStat to model single-gene stability of watermelon 

breeding data. RGxEStat can fast obtain single-gene stability statistics, including single-gene 

regression slope (𝛽𝛽1𝑗𝑗 ), regression deviation (𝑠𝑠𝑑𝑑2 ), Shukla's 𝜎𝜎𝑖𝑖2 , ssquares, Wricke's stability 

ecovalence (𝑊𝑊𝑖𝑖
2) and Kang's yield stability statistic (𝑌𝑌𝑆𝑆𝑖𝑖). The results of single-gene stability 

analysis of watermelon breeding data are shown in Table 5.4.  

In Table 5.4, ns indicates not significant, and + means that the genotype can be judged to 

be stable according to Kang's yield stability. In the 𝛽𝛽1𝑗𝑗 column, ** indicates that the t-test p 

values of the regression slope corresponding to this genotype is less than the significance level 

𝛼𝛼 = 0.01 (*** and * are the significance levels of 0.001 and 0.05), so 𝐻𝐻0: 𝛽𝛽1𝑗𝑗 = 1 is rejected, 

stating that the regression slope is significantly different from 1. Similarly, in 𝑠𝑠𝑑𝑑2 column, ** 

represents F-test p value of the regression deviation corresponding to the genotype is less than 

the significant level 𝛼𝛼 = 0.01, and the rejection of 𝐻𝐻0: 𝑠𝑠𝑑𝑑2 = 0 indicates that the regression 

deviation is significantly different from 0. From the statistical analysis in the table, it can be 

concluded that the watermelon varieties of CalhounGray, FiestaF1, GeorgiaRattlesnake, Legacy 

and StarbriteF1 have strong adaptability to the environment and are stable genotypes. 

Table 5.4 西瓜育种数据单基因稳定性分析表 

CLT 𝛽𝛽1𝑗𝑗  𝑠𝑠𝑑𝑑2 𝜎𝜎𝑖𝑖2 ssquares 𝑊𝑊𝑖𝑖
2 𝑌𝑌𝑆𝑆𝑖𝑖 

CalhounGray 1.301 124.670 61.347 ns 15.761 ns 279.747 10+ 

CrimsonSweet 1.341 1450.035** 439.125 ns 567.988 ns 1488.636 4 

EarlyCanada 0.249** 686.251** 253.230 ns 285.370 ns 893.772 2 

FiestaF1 1.639 657.873 300.285 ns 385.997 ns 1044.349 11+ 

GeorgiaRattlesnake 0.945 220.063 52.213 ns 44.863 ns 250.518 8+ 

Legacy 1.056 428.070 287.394 ns 262.488 ns 1003.097 7+ 

Mickylee 0.618 705.481** 188.105 ns 195.126 ns 685.374 3 

Quetzali 0.965 96.532 82.809 ns 86.103 ns 348.425 1 

StarbriteF1 1.388 221.137 157.241 ns 78.371 ns 586.607 12+ 

SugarBaby 0.498** 332.181** 264.187 ns 308.430 ns 928.836 -1 

5.4 Results of Multi-Gene Stability Analysis 

In this section, we mainly present the principal component biplots of stability analysis 

model, and utilize them to compare the superiority between multiple genotypes and multiple 
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environments and determine the mutual assistance between genotypes and environments. 

5.4.1 Results on Additive Main Effect and Multiplicative Interaction 

RGxEStat utilizes agricolae package to establish and analyze the additive main effect and 

multiplication interaction model. Taking watermelon breeding data and oat field data as 

examples, the biplots of AMMI model drawn by RGxEStat is shown in Figure 5.3, where the 

number of principal components retained is set to 4.  

 
Figure 5.3: (a) PC1 v.s. PC2 biplot of oat field data, (b) PC1 v.s. PC2 v.s. PC3 triplot of oat field data, (c) 

PC1 v.s. PC2 biplot of watermelon breeding data, (d) PC1 v.s. PC2 v.s. PC3 triplot of watermelon breeding 

data. 

In order to make biplots more concise, Gen1-10 is used to replace watermelon varieties 
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EarlyCanada, CalhounGray, StarbriteF1, CrimsonSweet, GeorgiaRattlesn, FiestaF1, Mickylee, 

SugarBaby, Legacy and Quetzali respectively in this section and thereafter. According to the 

model formula (4.4), the interaction between genes and environments can be represented by 

multiplying the gene score and environment score in each principal component and summing 

them along the principal components. Figure 5.3 provides a very effective depiction of the gene-

environment interactions. In Figure 5.3, genotypes and environments near the axis origin will 

not interact with each other (the product of their scores will be close to zero); genotypes and 

environments far away from the axis origin show great interaction, and therefore have high 

yield instability. Some people argue that the Euclidean distance from the origin should be 

regarded as a measure of instability. When genotypes and environments are close to each other, 

the interaction is positive. If two objects are close, their scores (coordinates) will have the same 

sign, so their products will be positive. When genotypes and environments are far away from 

each other, the interaction is negative. 

For example, for oat varieties, G03 variety in B1 environment, G13 in B2 environment, 

G05 in B1, B5, B2 environment have good yields (compared with the average level), while 

watermelon varieties Gen7 and Gen9 have particularly excellent yields in KN and TX 

environment. 

5.4.2 Results on Gene Main Effect plus Gene-Environment Interaction 

The GGE model decomposes the total effects of genes and gene-environment interactions 

by SVD and PCA, and then makes various biplots according to PC1 and PC2. In this section, 

only the watermelon breeding data is taken as an example to show the analysis process of GGE 

model by RGxEStat. RGxEStat can plot various GGE biplots with one click to identify varieties 

with high yield and high stability, and can also suggest which varieties are suitable for planting 

in a specific environment. Figure 5.4 illustrates a wide variety of GGE biplots, including 

discrimitiveness and representativeness, variety yield and stability, environment ranking, which 

won where/what, variety ranking and relationship between environments. The PC1 v.s. PC2 

biplot is not shown here, because it is similar to Figure 4.3 (c).  

Figures 5.4 (a) and (c) are used to judge the discrimination and representativeness of 

different environments, i.e., which environment can better distinguish high-yield and high-

stability varieties (the length of line segment in Figure 5.4 (a)) and which environment has 

strong representativeness for the target ecological zone. The arrowed line in (a) is the mean 

environment axis. The direction indicated by the arrowhead on it is the evaluation of the 

discrimination and representativeness of the test locations. The angle between the line segment  
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Figure 5.4 GGE biplots: (a) discrimitiveness v.s. representativeness, (b) yield mean v.s. stability, (c) ranking 

environments, (d) which won where/what, (e) ranking genotypes, (f) relationship among environments.  
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of the test site and the mean environmental axis is a measure of its representativeness of the 

target environment. The smaller the angle, the stronger the representativeness. If the angle 

between a test site and the mean environment axis is obtuse, it is not suitable as a trial 

environment. A test site without discrimination is useless. Discriminatory but unrepresentative 

test sites can eliminate unstable varieties. Only those with both discriminative and 

representative test sites can choose the best varieties with high and stable yield, such as the 

environment CL and TX in the biplot. Figure 5.4 (c) draws concentric circles according to the 

mean environment axis, where the smaller the circle is, the stronger the distinctiveness and 

representativeness of the environment.  

Figures 5.4 (b) and (e) reflect the productivity and stability of varieties. In Figure 5.4 (e), 

concentric circles are made according to the mean environment axis and if the circle where 

varieties are located is smaller, the better yield-environment interaction of varieties is, the better 

the variety is. However, the figure 5.4 (b) of mean and stability also requires the mean 

environment axis (straight line with arrow) and the mean environment value. There is also a 

straight line perpendicular to the mean environment axis through the center. The direction of 

the mean environment axis refers to the trend of the approximate average yield of varieties in 

all environments. Make a vertical line (green dotted line) between varieties and the mean 

environment axis. The longer the vertical line between varieties and the mean environment axis, 

the more unstable the varieties are. Thus, Gen1, Gen5 and Gen7 have stability and high yield. 

Figure 5.4 (d) mainly illustrates the variety with the highest yield in each environment 

according to the interaction between the variety and the environment. The figure connects the 

farthest points in all directions with straight lines to form a polygon, and divides the biplot into 

several sectors by making the center perpendicular to each side. The variety is distributed in the 

sectors. For the environments in a specific sector, the variety at the top corner of the sector has 

the best yield. For example, Gen3 variety has the highest yield in FL, TX, CL and KN 

environments.  

Figure 5.4 (f) depicts the relationship between the environments. It draws a line segment 

from the coordinate center to each environment, mainly to evaluate the distinctiveness and 

similarity of the environments. The cosine value of the angle (0° − 180° ) between the two 

environment line segments is their correlation coefficient. The angle between the two line 

segments is less than 90 degrees, which indicates a positive correlation and the two 

environments are similar in ranking the variety quality. The angle between the two line 

segments greater than 90 degrees indicates negative correlation and the ranking of variety 
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quality in the two environments is mostly opposite; The angle equal to 90 degrees means that 

the two environments are not related. The smaller angle close to zero degrees means that the 

two environments may be duplicated trial sites, and the evaluation of varieties will not be 

affected if one of them is removed. The length of the line segment represents the ability of the 

environment to discriminate between varieties, and the longer the line segment, the stronger the 

discrimination.  
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Chapter 6 Summary and Outlook 

This thesis introduces in detail the statistical methods for gene-environment interaction 

analysis, including significance analysis based on mixed effect model, single-gene stability 

model and multi-gene stability model. Then it presents RGxEStat, a portable interactive 

software integrating the above analysis methods and models. It is hoped that this software can 

avoid the need for breeders and agronomists to learn complex SAS or R programming and 

provide them with a simple and easy-to-operate tool for gene-environment interaction analysis, 

and thus shorten their research time. 

Currently, this field mainly relies on statistical models and methods to analyze multi-

environment breeding data and gene-environment interactions. Then, with the wide application 

of artificial intelligence and deep learning methods in various cross-cutting fields, in the future, 

the author hopes to develop some breeding tools based on deep learning to analyze and model 

complex high-dimensional nonlinear breeding data and nonlinear components in the interaction. 

Besides, it is also important to process multi-trait, multi-gene and multi-environment data 

simultaneously in agricultural production, because breeders always want to select varieties with 

more excellent traits at the same time. These excellent traits may be controlled by the same 

gene or have nothing to do with each other, so it is very challenging to analyze the gene-

environment interaction data for multiple phenotypic traits. At present, there is still a lack of 

academic research in this field, and this issue is also a direction worth exploring in the future. 
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